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A simplified integral equation for the pair distribution function of linear molecules interacting 
via a potential depending only on the shortest distance between molecular cores, is written down. 
The theory is developed starting from the Ornstein-Zernike equation and the Percus-Yevick 
closure relation, both for non-spherical particles. Two basic assumptions are made. Firstly the 
molecular pair distribution function is supposed to depend explicitly on the shortest distance 
but not on molecular orientations; secondly the direct correlation function inside the integral 
in the Ornstein-Zernike equation is approximated by some average value conveniently defined. 

The new integral equation is numerically solved for CO, and N2 assuming a Kihara potential. 
The main features of the distribution function, particularly its behaviour with temperature and 
density, are also investigated. The results obtained seem to agree well with a very probable 
structural model for liquid CO, and a reasonable model for N , ,  

I INTRODUCTION 

Up until the end of the past decade, research in Classical Statistical Mechanics 
on fluids in equilibrium has been practically restricted to “simple liquids,” 
where interactions can be adequately modelled by spherically symmetrical 
potentials. 

t Present address: Rhur Universitat Bochum, lnst. Thermo- und Fluiddynamik, 4630 
Bochum 1. FRG. 
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142 M. LOMBARDERO A N D  S. L A G 0  

The advances at the theoretical level as well as the results achieved by 
model simulation methods (Monte Carlo and Molecular Dynamics), sup- 
ported by a wealth of experimental information, have enabled us to make 
substantial progress in the knowledge of these systems.’ 

It is only in the last few years when increasing interest has been centered 
on polyatomic fluids interacting with non-central forces; nevertheless, sig- 
nificant advances have been already made in developing theories for such 
systems. 

For non-polar molecular liquids made up of rigid non-spherical particles, 
two different types of potential models have been proved to be useful in the 
description of their intermolecular forces: “atom-atom” or interaction site 
model (ISM) potentials’ and those of Kihara core type.3 The first one has 
been widely used to interpret the local structure of dense liquids both from 
the point of view of Statistical Mechanics4 and model simulation.5 On the 
other hand, first-order perturbation theories have been recently formulated 
by Ladanyi and Chandler3 for ISM potentials and by Boublik6 for Kihara 
systems. Finally, under certain approximations, the Percus-Yevick (PY) 
integral equation, generalized for angle-dependent non-spherical potentials, 
has been considered by Chen and Steele7 and by Ben-Naim8 to calculate 
the pair correlation function of liquid water with a water-like interaction 
potential. 

In this paper, we propose a different approximation based also on PY 
equation for non-spherical molecules. Our approximation have been par- 
ticularly thought out for linear molecules which can be modelled by a hard 
core linear segment with interactioris depending only on the shortest distance, 
p, between cores. The basic idea of this theory is the assumption that the 
pair distribution function, like the intermolecular potentials, depends only 
on p. With this assumption and some supplementary but important ap- 
proximations we write down in the next section an integral equation for the 
pair distribution function, whose main feature is its relative simplicity. It 
shows a similar structure of the primitive PY’s for spherical molecules, so 
that one may apply some of the same numerical methods of solution de- 
veloped for the last one. By using the Broyles’s method9 (whose adaptation 
to our case is considered in Section 3), the equation is solved for nitrogen 
and carbon dioxide in the same Section 3. Numerical calculations have 
been carried out with the Kihara potential: 

u(p) = 48 ((;)I’ - (;)“) 
where E is the potential well depth and 0 is the shortest distance defined as 
u(0) = 0. 

In Section 4, the calculated results are used to analyze the pair distribution 
function and its dependence on density and temperature. Section 5 is de- 
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THEORY OF ROD-LIKE MOLECULAR FLUIDS I 143 

voted to a discussion of possible liquid structures ; conclusions are presented 
in Section 6. 

II INTEGRAL EQUATION FOR THE PAIR DISTRIBUTION 
FU N CTlO N 

Our system consists of a one-component fluid containing N non-spherical 
molecules in a volume V at temperature T.  It is assumed that the molecules 
can be well represented by hard linear segments interacting via a potential 
u(p) which depends only on the shortest distance, p, between two segments. If 
L stands for the segment length, then the volume V,,  surface area S, ,  and mean 
curvature R,  of the core are V ,  = S ,  = 0, R, = nL. 

On the other hand, for molecules with angle-dependent intermolecular 
potential, the generalized Ornstein-Zernike (OZ) equation" is written as 

h(ql, q2) = c(ql, 42) f ($) S,(ql. q3)c(q2, q3) dq3 (2) 

where the notation is as follows. If R is the center of mass position vector and 
SZ denotes the orientational angles (Euler angles), then q stands for the set 
of translational and rotational coordinates {R, S Z }  and dq = dR . dSZ is the 
volume element in the q-hyperspace. The symbol 4e in the r.h.s. of Eq. (2) 
means the region in the q-space over which the integral must be evaluated; 
h(q, qr), defined in terms of the pair distribution function g(q, qr) by 

and c(q, q') as defined by the OZ equation, are respectively the total and 
direct correlation functions. Finally, n = N / V  is the number density. The 
rotational coordinates are defined so that 

h(q, 9') = dq ,  $1 - 1 (3) 

J d R =  8n2 (4) 

By inserting in Eq. (2) the Percus-Yevick approximation 

where k is the Boltzmann's constant and u(q, q') the intermolecular potential, 
one obtains the Percus-Yevick equation in the generalized form 

- exp(u(q2 7 q3)))dq2 3 43) dq3 (4) 
In its exact form this equation is unmanageable. Being an integral equation 
to be solved in a five-dimensional (for linear molecules) or six-dimensional 
(for non-linear molecules) space, it cannot be handled even by the fastest 
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144 M. L O M B A R D E R O  A N D  S. L A G 0  

and more powerful computers available today. For instance, it was 
estimated’ that to evaluate g(q, 9‘) for only ten values for each of the six 
independent variables require lo6 minutes of computational time, at least. 

For molecules with a water-like interaction potential, Ben-Naim’ has 
proposed an approximate theory for the pair correlation function g(q, q’). 
Basically, he assumes that the potential of the average forces can be split 
up into a direct and an indirect part, the last being a function only of the 
distance between the centers of mass of the corresponding molecules. Under 
this assumption it is possible to write Eq. (6) in a form ready for numerical 
integration. However, Ben-Naim’s theory does not seem adequate for par- 
ticles interacting with a Kihara type potential, as is our case. 

We will assume first that the pair potential w(q, 4’) of the average forces 
is only a function of the shortest distance, p ,  as is the case with the inter- 
action potential, I&). Then, taking into account the relationship 

9 = ex( - 6) (7) 

between the pair correlation function g and w, it follows that y((g(q, q’) -+ 

g ( p ) )  and the total correlation function h (see Eq. (3)) depend only on p. 
This is also true for the direct correlation function c, if one assumes a closure 
relation of the Percus-Yevick type, 

Starting from Eq. (2) and using relation (8), we try now to write down an 
integral equation for g(p). For correlation functions h(p)  and c(p) Eq. (2) 
yields 

However, this equation is almost as unmanageable as the initial one and 
therefore it requires some further simplification. The main source of trouble 
is that the distance p 2 3 ,  and consequently c(p2?)  too, appearing under the 
integral in Eq. (9), depends in a rather complicated way on p12 and pi3 
and also on the orientationn, of molecule 3. Keeping this in mind, we apply 
one of the simplest assumptions one can think of, that is, substituting the 
correlation function ~ ( ~ 2 3 )  by its average value 

P 1 2 + P l 3 + L  

<c> = (Pl2 + PI3 + L - wl)-l Jml c(p23) dp23 (10) 

which comes out by averaging ~ ( ~ 2 3 )  over all distances p23 that are com- 
patiblewithgiven~aluesofp,~and pI3.InEq.(lO)ml = max( \p12 - p I 3 )  - 
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2 
-%-+ - 

p12 L 
0- I 

FIGURE 1 Illustration of the integration limits in Eq. (10). (a) upper limit; (b) lower limit. 

L, 0), and its integral limits are best visualized in Figure 1. The usefullness of 
(c), as defined by (lo), rests on being only dependent on p12 and ~ 1 3 ,  

which facilitates integration of (9). 
Taking the center of mass of particle 1 as the origin of coordinates, the 

geometry of convex bodies yields the well-known results" 

where R,, = R, - R,: u(0, 4)  is the unit vector in the direction of the 
normal to the supporting plane of body 1 with respect to body 3 (Figure 2), 
and 8 and 4 are the polar angles of this vector direction. 

Also for convex bodies 

(Set,+,) = 2S, + 4n(2R? + 4R,p + p') (1 3 )  
which for a segment of length L becomes 

1 (&+,+,) = 471 - + L P  + P Z  (Y 
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146 M. LOMBARDERO AND S. LAG0 

FIGURE 2 
ing plane of body 1 with respect to body 3. 

Geometry of the convex bodies I and 3; u is the unit vector normal to the support- 

The brackets ( ) mean average value with respect to the orientation of 
particle 3, of the indicated geometric functional for convex parallel bodies. 

On the other hand, if p13 < L molecules 2 and 3 may overlap for some of 
their mutual positions and orientations. When overlapping occurs, some 
forbidden configurations of molecules 1,2 and 3, which should not contribute 
to Eq. (9), are artificially included through the integral in (10). As our last 
approximation we will assume that this contribution to g(p)  is negligible 
and then ( c )  may be computed by Eq. (10) inside the parallel body at 
the L distance. 

The largest error in this approximation to the computation of function: 

can be estimated by 

Computations about ~ ( y )  have shown that it does not appreciably affect 
computed values of g(p), except at very high densities. 
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THEORY OF ROD-LIKE MOLECULAR FLUIDS I I 4 1  

By using expressions (10)-(12) and (15) into Eq. (9) this one becomes 

Y ( P )  = 1 + n J (~,+,,,+,)(c(p2,))h(pi,)dp,, 

which in the Percus-Yevick approximation (8) takes the form 
0 

(L2 + Lp’ + (p’)2) 

x ( p  + p’ + L - rn1)-’(g(p’) - l))g(p”){exprg) - 1) dp”dp’ (18) 

Equation (18), and the more Eq. (17), is a second order integral equation, 
similar to that of PY. Its comparative simplicity makes Eq. (18) amenable to 
a treatment by standard numerical methods. Unfortunately, it is not an 
exact convolution equation and therefore cannot be Fourier transformed in 
a product. 

111 NUMERICAL RESULTS FOR THE PAIR DISTRIBUTION 
FU N CTl ON 

Integral Eq. (18) has been solved for carbon dioxide and nitrogen. A linear 
segment was used as hard core and Kihara potential parameters are given in 
Table I. 

Broyles methodg was applied to solve the integral equation in the following 
way. For both fixed temperature and density, we try first as initial solution 
the corresponding to zero density or a density close to the given one if it 
is known from the previous calculations. An improved solution is then sought 
by an iterative procedure. Successive proposed solutions are a linear com- 
bination of the input and output functions of the preceding iteration cycle: 

where n is the iteration cycle number and 0 < u < 1. A typical value for u is 
0.9 about. As in the original Broyles’ method, we have found that when an 

TABLE I 

Kihara’s potential parameters used in this 
work. (From Ref. 17) 

Substance Core length elk (T 

CO, 2.30 316 2.940 
N, 0.93 117 3.207 
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148 M. LOMBARDERO A N D  S. L A G 0  

approximate solution close to the actual one is reached, the method provides 
an exponential convergence towards the final solution. To improve this 
convergence rate Broyles’ procedure’ for infinite cycles was used. The 
double integral in Eq. (18) was evaluated by the Korobov and Labbude’s 
method” using 144 points to guarantee an integration accuracy better than 
1 %. (Occasionally we have used 987 points). The integration upper limit 
was set at 3 0  + 2L after checking that higher values do not appreciably alter 
the value of g(p). 

Systematic calculations have been carried out for C 0 2  in the 230-400 K 
temperature range and 20-1074 Kg . m-3 density range. (Critical tempera- 
ture and density are 304.21 K and 466 Kg - m- 3 ,  respectively). For N2 the 
corresponding ranges were narrower but equally meaningful. Calculations 
have been carried out on an IBM 360/65 computer requiring about 3 minutes 
of CPU time for a point in T - p space and 60 Kbytes of permanent 
memory. 

In Table I1 some of the calculated valuesI3 for g ( p )  of C 0 2  at 280 K and 
1021 Kg m - 3  are given. These data correspond to a reduced temperature 
T* = 0.756 and reduced density n* = 0.405, where 

kT T* = - 
E 

n* = nK+,,2 

TABLE I1 

Pair distribution function for CO, at 280 K and 
1021 K g m - 3  

f 18, 
~ 

2.6 
2.8 
3.0 
3.2 
3.4 
3.6 
3.8 
4.0 
4.2 
4.4 
4.6 
4.8 
5.0 
5.2 
5.4 
5.6 
5.8 

~ ~~ ~~ 

d f )  f l A  d f )  

0.000 6.0 1.025 
0.124 6.2 1.010 
1.563 6.4 0.988 
2.940 6.6 0.967 
2.999 6.8 0.949 
2.568 7.0 0.962 
2.138 7.2 0.972 
1.827 7.4 0.963 
1.601 7.6 0.952 
1.440 7.8 0.999 
1.323 8.0 1.016 
1.233 8.2 1.022 
1.164 8.4 1.024 
1.112 8.6 1.020 
1.069 8.8 1.013 
1.031 9.0 1.016 
1.004 9.2 1.031 

9.4 
9.6 
9.8 

10.0 
10.2 
10.4 
10.6 
10.8 
11.0 
11.2 
11.4 
11.6 
11.8 
12.0 
12.2 
12.4 
12.6 

df 1 
1.032 
1.030 
1.027 
1.022 
1.016 
1.01 I 
1.007 
1.005 
I .004 
1.004 
1.004 
1.003 
1.001 
1 .000 
1.001 
1.002 
1.002 
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FIGURE 3 Pair distribution function of C 0 2  at T = 230 K and two different densities. 
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I I I I I I 
5 6 7 8 9 10 11 12 

P / A  
FIGURE 4 
of CO, plotted in Figure 3. 

Detail showing the fine structure, in an expanded scale, of the distribution function 
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! 

A 

2 - a - 
0 

1 

C 

c 

- 
0 1 2 3 4 

P I 0  

FIGURE 5 Pair distribution function of NZ and CO, for T* = 0.756 and n* = 0.405. 

The CO, pair distribution functions at low (20 Kg.m-3)  and high 
(1021 Kg . m-3) density at 230 K, are plotted in Figure 3 against the shortest 
distance p .  Features of the high density curve are shown in an enlarged 
view on Figure 4. Finally, Figure 5 allows comparison of CO, and N, dis- 
tribution functions at the same reduced temperature (T* = 0.756) and density 
(n* = 0.405). As shown by Figures 3 to 5, the most striking feature of these 
results is probably the high degree of complexity displayed by the curve of the 
distribution function solution of Eq. (18). The almost periodic maxima and 
minima of the spherical molecules distribution function is replaced here by 
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152 M. LOMBARDERO AND S. L A G 0  

a larger and more complex set of maxima and minima. Consequently, up to 
a 30 distance there are as many as 7 or 8 well-defined maxima. Undoubtedly 
such behaviour reflects a complex local structure to be expected in a fluid 
of non-spherical molecules, where to the position correlations, characterizing 
atomic fluids, other important correlations due to orientation are accrued. 

IV TEMPERATURE AND DENSITY CHANGES OF g(p)  

Although the linear core PDF behaviour with temperature shows a great 
similarity with that of PY's for spherical m~lecules , '~  is, however, more 
complex. Table I11 summarizes the maxima and minima values for N, and 
CO, at different temperatures and n* = 0.405. As in the case of spherical 
potentials, it is noticed that a decrease in temperature makes more pro- 
nounced the maxima and minima, effect which is more noticeable when 
simultaneous changes in density occur. For instance, the first COz maximum 
at n* = 0.202 changes its value from 2.151 at 400 K to 2.688 at 300 K. 
Obviously, the first peak growth upon decreasing temperature should mean 
an increase in the number of nearest neighbours of the central molecule. 

On the other hand, a decrease in temperature causes the distribution 
function structure to become more complicated. For instance, whereas the 
structure of the second and successive maxima is not very distinct at 400 K 
is more obvious at 230 K. The magnitude of changes with density seem to be 
dependent on temperature. They even change sign upon going from high 
to low temperature. For instance, we have found that the main CO, peak 
at 400 K increases from 2.16 to 2.23 when density goes from 60 to 1021 
Kg . m- 3,  while at 3 10 K decreases first from 2.70 to 2.67 for n going from 
20 to 400 K g .  m - 3  and then increases up to 2.74 at 1021 Kg.m-3.  Finally, 

TABLE 111 

Heights of thc successive maxima and minima in g ( p )  for N, and C 0 2  
at n* = 0.405 and several temperatures 

Nitrogen Carbon dioxide 
~~ 

T/K 85.1 100 230 280 310 400 

1st max 
2nd max 
1st min 
3rd max 
4th max 
2nd min 
5th max 
6th max 

4.740 3.278 3.986 
1.423 1.1 15 1.126 
1.046 0.958 0.915 
1.347 1.141 1.224 
1.341 1.158 1.209 
1.103 1.047 1.040 
1.156 1.061 1.066 

3.086 2.814 2.280 
1.025 1.023 1.019 
0.949 0.957 0.965 
1.012 1.008 1.024 
- 1.022 1.033 

1.002 1.001 1.000 
1.0043 1.0037 1.003 
1.0018 1.0011 - 
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at low temperatures it decreases steadily so that at 280 K it goes from 3.00 at 
20 Kg . m-3 to 2.92 at 1000 Kg + m-3. 

In any case, it is observed that changes in the first maximum height due to 
density are less important than those due to temperature. However, the 
PDF as a whole undergoes appreciable qualitative changes with density. 
Figure 3 illustrates this situation for CO, at 230 K. It is apparent that in 
going from low to high density the PDF changes until it adopts its charac- 
teristic structure with its main maxima and minima, each one in turn con- 
sisting of a fine structure of secondary maxima and minima. 

Existence of this complex structure has been confirmed by applying 
computer programs dealing with 987 points for a double integral, in order to 
lower the error in g(p) below 0.1 %. Besides, in some cases, we have used the 
solution obtained by a Broyles’ extrapolation as a new input solution at the 
same temperature and density, and have repeated the procedure through 
four extrapolations. Besides, such a non-periodical behaviour have been 
observed in the Monte Carlo results by Nezbeda and Boublik for hard 
spherocylinders. l4 

V COMMENTS ON MOLECULAR FLUIDS STRUCTURE 

The molecular cores used in the calculations above have the same geometrical 
shape and values for the S ,  and V,  parameters (S, = 0, V ,  = 0). Therefore 
comparison of the curves at the same reduced density and temperature gives 
the variation with the mean curvature or segment length. Figure 5 shows 
that even if we make p* = p/o the curves do not overlap completely. A few 
differences are observed. The maxima are less pronounced in the case of the 
longest molecule, COz,  as if their distribution were more uniform. Besides 
more peaks are observed for N, , e.g. a maximum at p* = 1.57. C 0 2  minima 
and in particular the first one are more pronounced as if the most unfavour- 
able molecular positions were become more so upon increasing core length. 
If on the basis of their shape we assume that the couple of close peaks cen- 
tered around p* = 2.36 for N, and p* = 2.92 for COz are homologous, 
we see that there is a phase shift of about 0.55 reduced units of one curve with 
respect to  the other. This shift could probably be adscribed to the length 
difference between two cores. The structure found at larger reduced distances 
for CO, could be caused either by this fact or by the long-distance quadru- 
pole interaction somewhat averaged in the potential parameters. 

The shortest distance is a quantity hard to handle to derive the fluid 
molecular structure and it does not seem to be adequate to obtain directly 
a mental picture of the fluid structure from the PDF. We can check, however, 
if our results agree with some kind of structure already suggested. If we 
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154 M. LOMBARDERO AND S. L A G 0  

TABLE IV 
Distances between neighbouring 
molecules in C 0 2  crystals and posi- 

tions of peak in g(p) 

Peak Distances in 
Peak positions C0,-crystals 

1 3.38 3.29 
2 ? 4.97 
3 5.96 5.71 
4 7.15 6.64 
5 ~ 8.12 
6 8.08 1.96 
7 9.09 9.33 
8 11.27 10.69 

consider that a high density fluid structure should not differ greatly from a 
solid, though it is more loose, we may accept the crystal structure as a good 
starting point. 

CO, crystallizes in a face centered cubic l a t t i ~ e . ~  The high quadrupole 
moment of this molecule makes this lattice to be formed of four other simple 
cubic lattices with their molecules pointing to different directions within 
each lattice. Table IV compares the distances between neighbouring mole- 
cules in a CO, crystal obtained from Kihara and Koba formulae,I6 and the 
positions of successive peaks in our g(p). The agreement is good for peak 1 
and also for those numbered 3 to 6. The undetected second one in g(p) is 
probably hidden under the unusual width of the PDF's first peak (refer to 
Figures 3 and 4). The agreement is less satisfactory for the observed last 
maxima in the distribution function. 

Below 35 K N, crystallyzes in a lattice similar to that of CO, something 
which could explain the similarity between both molecular PDF's. However, 
the N, molecule middle point does not fall on a face of the centered cubic 
lattice. The point that does it divides the N-N bond in about the 4/7 ratio.3 
As far as we know no calculations have been carried out to determine the 
shortest distances in this lattice. This kind of data could confirm or refute 
whether the slight differences between both PDF's correspond to the effect 
of the shifted point. 

VI CONCLUSIONS 

Starting from the Ornstein-Zernike relationship and the PY closure we 
have obtained a non-linear integral equation for linear molecules. The new 
equation is solvable in a reasonable computational time by classical methods 
for numerical solutions of integral equations. 
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Unfortunately, Molecular Dynamics computations do not exist for 
molecules interacting with a Kihara potential, but the PDF we have obtained 
agrees very well with a probable model for liquid C 0 2  and a reasonable 
model for N, . 

Lastly, computed PDF shows some of the features of Monte Carlo cal- 
culations for hard spherocylinders. 
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